flow/src/file_watcher.zig

942 lines
39 KiB
Zig

const std = @import("std");
const tp = @import("thespian");
const cbor = @import("cbor");
const log = @import("log");
const builtin = @import("builtin");
pid: tp.pid_ref,
const Self = @This();
const module_name = @typeName(Self);
pub const EventType = enum {
created,
modified,
deleted,
/// A new directory was created inside a watched directory. The receiver
/// should call watch() on the path to get events for files created in it.
dir_created,
/// Only produced on macOS and Windows where the OS gives no pairing info.
/// On Linux, paired renames are emitted as a { "FW", "rename", from, to } message instead.
renamed,
};
pub const Error = FileWatcherError;
pub const FileWatcherError = error{
FileWatcherSendFailed,
ThespianSpawnFailed,
OutOfMemory,
};
const SpawnError = error{ OutOfMemory, ThespianSpawnFailed };
/// Watch a path (file or directory) for changes. The caller will receive:
/// .{ "FW", "change", path, event_type }
/// where event_type is a file_watcher.EventType tag string: "created", "modified", "deleted", "renamed"
/// On Linux, paired renames produce: .{ "FW", "rename", from_path, to_path }
pub fn watch(path: []const u8) FileWatcherError!void {
return send(.{ "watch", path });
}
/// Stop watching a previously watched path.
pub fn unwatch(path: []const u8) FileWatcherError!void {
return send(.{ "unwatch", path });
}
pub fn start() SpawnError!void {
_ = try get();
}
pub fn shutdown() void {
const pid = tp.env.get().proc(module_name);
if (pid.expired()) return;
pid.send(.{"shutdown"}) catch {};
}
fn get() SpawnError!Self {
const pid = tp.env.get().proc(module_name);
return if (pid.expired()) create() else .{ .pid = pid };
}
fn send(message: anytype) FileWatcherError!void {
return (try get()).pid.send(message) catch error.FileWatcherSendFailed;
}
fn create() SpawnError!Self {
const pid = try Process.create();
defer pid.deinit();
tp.env.get().proc_set(module_name, pid.ref());
return .{ .pid = tp.env.get().proc(module_name) };
}
const Backend = switch (builtin.os.tag) {
.linux => INotifyBackend,
.macos => FSEventsBackend,
.freebsd => KQueueBackend,
.windows => WindowsBackend,
else => @compileError("file_watcher: unsupported OS"),
};
const INotifyBackend = struct {
inotify_fd: std.posix.fd_t,
fd_watcher: tp.file_descriptor,
watches: std.AutoHashMapUnmanaged(i32, []u8), // wd -> owned path
const IN = std.os.linux.IN;
const watch_mask: u32 = IN.CREATE | IN.DELETE | IN.MODIFY |
IN.MOVED_FROM | IN.MOVED_TO | IN.DELETE_SELF |
IN.MOVE_SELF | IN.CLOSE_WRITE;
const in_flags: std.os.linux.O = .{ .NONBLOCK = true };
fn init() error{ ProcessFdQuotaExceeded, SystemFdQuotaExceeded, SystemResources, Unexpected, ThespianFileDescriptorInitFailed }!@This() {
const ifd = try std.posix.inotify_init1(@bitCast(in_flags));
errdefer std.posix.close(ifd);
const fwd = try tp.file_descriptor.init(module_name, ifd);
return .{ .inotify_fd = ifd, .fd_watcher = fwd, .watches = .empty };
}
fn deinit(self: *@This(), allocator: std.mem.Allocator) void {
self.fd_watcher.deinit();
var it = self.watches.iterator();
while (it.next()) |entry| allocator.free(entry.value_ptr.*);
self.watches.deinit(allocator);
std.posix.close(self.inotify_fd);
}
fn arm(self: *@This(), _: std.mem.Allocator, parent: tp.pid) error{ThespianFileDescriptorWaitReadFailed}!void {
parent.deinit();
try self.fd_watcher.wait_read();
}
fn add_watch(self: *@This(), allocator: std.mem.Allocator, path: []const u8) error{OutOfMemory}!void {
const path_z = try allocator.dupeZ(u8, path);
defer allocator.free(path_z);
const wd = std.os.linux.inotify_add_watch(self.inotify_fd, path_z, watch_mask);
if (wd < 0) return error.FileWatcherFailed;
const owned_path = try allocator.dupe(u8, path);
errdefer allocator.free(owned_path);
const result = try self.watches.getOrPut(allocator, @intCast(wd));
if (result.found_existing) allocator.free(result.value_ptr.*);
result.value_ptr.* = owned_path;
}
fn remove_watch(self: *@This(), allocator: std.mem.Allocator, path: []const u8) void {
var it = self.watches.iterator();
while (it.next()) |entry| {
if (!std.mem.eql(u8, entry.value_ptr.*, path)) continue;
_ = std.os.linux.inotify_rm_watch(self.inotify_fd, entry.key_ptr.*);
allocator.free(entry.value_ptr.*);
self.watches.removeByPtr(entry.key_ptr);
return;
}
}
fn handle_read_ready(self: *@This(), allocator: std.mem.Allocator, parent: tp.pid_ref) (std.posix.ReadError || error{ NoSpaceLeft, OutOfMemory, Exit })!void {
const InotifyEvent = extern struct {
wd: i32,
mask: u32,
cookie: u32,
len: u32,
};
// A pending MOVED_FROM waiting to be paired with a MOVED_TO by cookie.
const PendingRename = struct {
cookie: u32,
path: []u8, // owned by drain's allocator
};
var buf: [4096]u8 align(@alignOf(InotifyEvent)) = undefined;
var pending_renames: std.ArrayListUnmanaged(PendingRename) = .empty;
defer {
// Any unpaired MOVED_FROM means the file was moved out of the watched tree.
for (pending_renames.items) |r| {
parent.send(.{ "FW", "change", r.path, EventType.deleted }) catch {}; // moved outside watched tree
allocator.free(r.path);
}
pending_renames.deinit(allocator);
}
while (true) {
const n = std.posix.read(self.inotify_fd, &buf) catch |e| switch (e) {
error.WouldBlock => break,
else => return e,
};
var offset: usize = 0;
while (offset + @sizeOf(InotifyEvent) <= n) {
const ev: *const InotifyEvent = @ptrCast(@alignCast(buf[offset..].ptr));
const name_offset = offset + @sizeOf(InotifyEvent);
offset = name_offset + ev.len;
const watched_path = self.watches.get(ev.wd) orelse continue;
const name: []const u8 = if (ev.len > 0)
std.mem.sliceTo(buf[name_offset..][0..ev.len], 0)
else
"";
var full_buf: [std.fs.max_path_bytes]u8 = undefined;
const full_path: []const u8 = if (name.len > 0)
try std.fmt.bufPrint(&full_buf, "{s}/{s}", .{ watched_path, name })
else
watched_path;
if (ev.mask & IN.MOVED_FROM != 0) {
// Park it, we may receive a paired MOVED_TO with the same cookie.
try pending_renames.append(allocator, .{
.cookie = ev.cookie,
.path = try allocator.dupe(u8, full_path),
});
} else if (ev.mask & IN.MOVED_TO != 0) {
// Look for a paired MOVED_FROM.
var found: ?usize = null;
for (pending_renames.items, 0..) |r, i| {
if (r.cookie == ev.cookie) {
found = i;
break;
}
}
if (found) |i| {
// Complete rename pair: emit a single atomic rename message.
const r = pending_renames.swapRemove(i);
defer allocator.free(r.path);
try parent.send(.{ "FW", "rename", r.path, full_path });
} else {
// No paired MOVED_FROM, file was moved in from outside the watched tree.
try parent.send(.{ "FW", "change", full_path, EventType.created });
}
} else if (ev.mask & IN.MOVE_SELF != 0) {
// The watched directory itself was renamed/moved away.
try parent.send(.{ "FW", "change", full_path, EventType.deleted });
} else {
const event_type: EventType = if (ev.mask & IN.CREATE != 0)
if (ev.mask & IN.ISDIR != 0) .dir_created else .created
else if (ev.mask & (IN.DELETE | IN.DELETE_SELF) != 0)
.deleted
else if (ev.mask & (IN.MODIFY | IN.CLOSE_WRITE) != 0)
.modified
else
continue;
try parent.send(.{ "FW", "change", full_path, event_type });
}
}
}
}
};
const FSEventsBackend = struct {
stream: ?*anyopaque, // FSEventStreamRef
queue: ?*anyopaque, // dispatch_queue_t
ctx: ?*CallbackContext, // heap-allocated, freed after stream is stopped
watches: std.StringArrayHashMapUnmanaged(void), // owned paths
const threaded = false; // callback fires on GCD thread; no FW_event needed
const kFSEventStreamCreateFlagNoDefer: u32 = 0x00000002;
const kFSEventStreamCreateFlagFileEvents: u32 = 0x00000010;
const kFSEventStreamEventFlagItemCreated: u32 = 0x00000100;
const kFSEventStreamEventFlagItemRemoved: u32 = 0x00000200;
const kFSEventStreamEventFlagItemRenamed: u32 = 0x00000800;
const kFSEventStreamEventFlagItemModified: u32 = 0x00001000;
const kFSEventStreamEventFlagItemIsDir: u32 = 0x00020000;
const kFSEventStreamEventIdSinceNow: u64 = 0xFFFFFFFFFFFFFFFF;
const kCFStringEncodingUTF8: u32 = 0x08000100;
const cf = struct {
pub extern "c" fn CFStringCreateWithBytesNoCopy(
alloc: ?*anyopaque,
bytes: [*]const u8,
numBytes: isize,
encoding: u32,
isExternalRepresentation: u8,
contentsDeallocator: ?*anyopaque,
) ?*anyopaque;
pub extern "c" fn CFArrayCreate(
allocator: ?*anyopaque,
values: [*]const ?*anyopaque,
numValues: isize,
callBacks: ?*anyopaque,
) ?*anyopaque;
pub extern "c" fn CFRelease(cf: *anyopaque) void;
pub extern "c" fn FSEventStreamCreate(
allocator: ?*anyopaque,
callback: *const anyopaque,
context: ?*anyopaque,
pathsToWatch: *anyopaque,
sinceWhen: u64,
latency: f64,
flags: u32,
) ?*anyopaque;
pub extern "c" fn FSEventStreamSetDispatchQueue(stream: *anyopaque, queue: *anyopaque) void;
pub extern "c" fn FSEventStreamStart(stream: *anyopaque) u8;
pub extern "c" fn FSEventStreamStop(stream: *anyopaque) void;
pub extern "c" fn FSEventStreamInvalidate(stream: *anyopaque) void;
pub extern "c" fn FSEventStreamRelease(stream: *anyopaque) void;
pub extern "c" fn dispatch_queue_create(label: [*:0]const u8, attr: ?*anyopaque) *anyopaque;
pub extern "c" fn dispatch_release(obj: *anyopaque) void;
pub extern "c" var kCFAllocatorNull: *anyopaque;
};
const CallbackContext = struct {
parent: tp.pid,
};
fn init() error{}!@This() {
return .{ .stream = null, .queue = null, .ctx = null, .watches = .empty };
}
fn deinit(self: *@This(), allocator: std.mem.Allocator) void {
if (self.stream) |s| {
cf.FSEventStreamStop(s);
cf.FSEventStreamInvalidate(s);
cf.FSEventStreamRelease(s);
self.stream = null;
}
if (self.queue) |q| {
cf.dispatch_release(q);
self.queue = null;
}
if (self.ctx) |c| {
c.parent.deinit();
allocator.destroy(c);
self.ctx = null;
}
var it = self.watches.iterator();
while (it.next()) |entry| allocator.free(entry.key_ptr.*);
self.watches.deinit(allocator);
}
fn arm(self: *@This(), allocator: std.mem.Allocator, parent: tp.pid) error{OutOfMemory}!void {
errdefer parent.deinit();
if (self.stream != null) return;
var cf_strings: std.ArrayListUnmanaged(?*anyopaque) = .empty;
defer cf_strings.deinit(allocator);
var it = self.watches.iterator();
while (it.next()) |entry| {
const path = entry.key_ptr.*;
const s = cf.CFStringCreateWithBytesNoCopy(
null,
path.ptr,
@intCast(path.len),
kCFStringEncodingUTF8,
0,
cf.kCFAllocatorNull,
) orelse continue;
cf_strings.append(allocator, s) catch {
cf.CFRelease(s);
break;
};
}
defer for (cf_strings.items) |s| cf.CFRelease(s.?);
const paths_array = cf.CFArrayCreate(
null,
cf_strings.items.ptr,
@intCast(cf_strings.items.len),
null,
) orelse return;
defer cf.CFRelease(paths_array);
const ctx = try allocator.create(CallbackContext);
errdefer allocator.destroy(ctx);
ctx.* = .{ .parent = parent };
const stream = cf.FSEventStreamCreate(
null,
@ptrCast(&callback),
ctx,
paths_array,
kFSEventStreamEventIdSinceNow,
0.1,
kFSEventStreamCreateFlagNoDefer | kFSEventStreamCreateFlagFileEvents,
) orelse return;
errdefer cf.FSEventStreamRelease(stream);
const queue = cf.dispatch_queue_create("flow.file_watcher", null);
cf.FSEventStreamSetDispatchQueue(stream, queue);
_ = cf.FSEventStreamStart(stream);
self.stream = stream;
self.queue = queue;
self.ctx = ctx;
}
fn callback(
_: *anyopaque,
info: ?*anyopaque,
num_events: usize,
event_paths: *anyopaque,
event_flags: [*]const u32,
_: [*]const u64,
) callconv(.c) void {
const ctx: *CallbackContext = @ptrCast(@alignCast(info orelse return));
const paths: [*][*:0]const u8 = @ptrCast(@alignCast(event_paths));
for (0..num_events) |i| {
const path = std.mem.sliceTo(paths[i], 0);
const flags = event_flags[i];
const event_type: EventType = if (flags & kFSEventStreamEventFlagItemRemoved != 0)
.deleted
else if (flags & kFSEventStreamEventFlagItemCreated != 0)
if (flags & kFSEventStreamEventFlagItemIsDir != 0) .dir_created else .created
else if (flags & kFSEventStreamEventFlagItemRenamed != 0)
.renamed
else if (flags & kFSEventStreamEventFlagItemModified != 0)
.modified
else
continue;
ctx.parent.send(.{ "FW", "change", path, event_type }) catch return;
}
}
fn add_watch(self: *@This(), allocator: std.mem.Allocator, path: []const u8) error{OutOfMemory}!void {
if (self.watches.contains(path)) return;
const owned = try allocator.dupe(u8, path);
errdefer allocator.free(owned);
try self.watches.put(allocator, owned, {});
// Watches added after arm() take effect on the next restart.
// In practice all watches are added before arm() is called.
}
fn remove_watch(self: *@This(), allocator: std.mem.Allocator, path: []const u8) void {
if (self.watches.fetchSwapRemove(path)) |entry| allocator.free(entry.key);
}
};
const KQueueBackend = struct {
kq: std.posix.fd_t,
shutdown_pipe: [2]std.posix.fd_t, // [0]=read [1]=write; write a byte to wake the thread
thread: ?std.Thread,
watches: std.StringHashMapUnmanaged(std.posix.fd_t), // owned path -> fd
// Per-directory snapshots of filenames, used to diff on NOTE_WRITE.
// Key: owned dir path (same as watches key), value: set of owned filenames.
// Accessed from both the main thread (add_watch) and the background thread (scan_dir).
snapshots: std.StringHashMapUnmanaged(std.StringHashMapUnmanaged(void)),
snapshots_mutex: std.Thread.Mutex,
const EVFILT_VNODE: i16 = -4;
const EVFILT_READ: i16 = -1;
const EV_ADD: u16 = 0x0001;
const EV_ENABLE: u16 = 0x0004;
const EV_CLEAR: u16 = 0x0020;
const EV_DELETE: u16 = 0x0002;
const NOTE_WRITE: u32 = 0x00000002;
const NOTE_DELETE: u32 = 0x00000004;
const NOTE_RENAME: u32 = 0x00000020;
const NOTE_ATTRIB: u32 = 0x00000008;
const NOTE_EXTEND: u32 = 0x00000004;
fn init() (std.posix.KQueueError || std.posix.KEventError)!@This() {
const kq = try std.posix.kqueue();
errdefer std.posix.close(kq);
const pipe = try std.posix.pipe();
errdefer {
std.posix.close(pipe[0]);
std.posix.close(pipe[1]);
}
// Register the read end of the shutdown pipe with kqueue so the thread
// wakes up when we want to shut down.
const shutdown_kev = std.posix.Kevent{
.ident = @intCast(pipe[0]),
.filter = EVFILT_READ,
.flags = EV_ADD | EV_ENABLE,
.fflags = 0,
.data = 0,
.udata = 0,
};
_ = try std.posix.kevent(kq, &.{shutdown_kev}, &.{}, null);
return .{ .kq = kq, .shutdown_pipe = pipe, .thread = null, .watches = .empty, .snapshots = .empty, .snapshots_mutex = .{} };
}
fn deinit(self: *@This(), allocator: std.mem.Allocator) void {
// Signal the thread to exit by writing to the shutdown pipe.
_ = std.posix.write(self.shutdown_pipe[1], &[_]u8{0}) catch {};
if (self.thread) |t| t.join();
std.posix.close(self.shutdown_pipe[0]);
std.posix.close(self.shutdown_pipe[1]);
var it = self.watches.iterator();
while (it.next()) |entry| {
std.posix.close(entry.value_ptr.*);
allocator.free(entry.key_ptr.*);
}
self.watches.deinit(allocator);
var sit = self.snapshots.iterator();
while (sit.next()) |entry| {
var names = entry.value_ptr.*;
var nit = names.iterator();
while (nit.next()) |ne| allocator.free(ne.key_ptr.*);
names.deinit(allocator);
}
self.snapshots.deinit(allocator);
std.posix.close(self.kq);
}
fn arm(self: *@This(), allocator: std.mem.Allocator, parent: tp.pid) (error{AlreadyArmed} || std.Thread.SpawnError)!void {
errdefer parent.deinit();
if (self.thread != null) return error.AlreadyArmed;
self.thread = try std.Thread.spawn(.{}, thread_fn, .{ self.kq, &self.watches, &self.snapshots, &self.snapshots_mutex, allocator, parent });
}
fn thread_fn(
kq: std.posix.fd_t,
watches: *const std.StringHashMapUnmanaged(std.posix.fd_t),
snapshots: *std.StringHashMapUnmanaged(std.StringHashMapUnmanaged(void)),
snapshots_mutex: *std.Thread.Mutex,
allocator: std.mem.Allocator,
parent: tp.pid,
) void {
defer parent.deinit();
var events: [64]std.posix.Kevent = undefined;
while (true) {
// Block indefinitely until kqueue has events.
const n = std.posix.kevent(kq, &.{}, &events, null) catch break;
for (events[0..n]) |ev| {
if (ev.filter == EVFILT_READ) return; // shutdown pipe readable, exit
if (ev.filter != EVFILT_VNODE) continue;
// Find the directory path for this fd.
var wit = watches.iterator();
while (wit.next()) |entry| {
if (entry.value_ptr.* != @as(std.posix.fd_t, @intCast(ev.ident))) continue;
const dir_path = entry.key_ptr.*;
if (ev.fflags & NOTE_DELETE != 0) {
parent.send(.{ "FW", "change", dir_path, EventType.deleted }) catch return;
} else if (ev.fflags & NOTE_RENAME != 0) {
parent.send(.{ "FW", "change", dir_path, EventType.renamed }) catch return;
} else if (ev.fflags & NOTE_WRITE != 0) {
scan_dir(dir_path, snapshots, snapshots_mutex, allocator, parent) catch {};
}
break;
}
}
}
}
// Scan a directory and diff against the snapshot, emitting created/deleted events.
fn scan_dir(
dir_path: []const u8,
snapshots: *std.StringHashMapUnmanaged(std.StringHashMapUnmanaged(void)),
snapshots_mutex: *std.Thread.Mutex,
allocator: std.mem.Allocator,
parent: tp.pid,
) !void {
var dir = std.fs.openDirAbsolute(dir_path, .{ .iterate = true }) catch return;
defer dir.close();
// Collect current filenames (no lock needed, reading filesystem only).
var current: std.StringHashMapUnmanaged(void) = .empty;
defer {
var it = current.iterator();
while (it.next()) |e| allocator.free(e.key_ptr.*);
current.deinit(allocator);
}
var iter = dir.iterate();
while (try iter.next()) |entry| {
if (entry.kind != .file) continue;
const name = try allocator.dupe(u8, entry.name);
try current.put(allocator, name, {});
}
// Emit dir_created for new subdirectories outside the lock (no snapshot involvement).
var dir2 = std.fs.openDirAbsolute(dir_path, .{ .iterate = true }) catch return;
defer dir2.close();
var dir_iter = dir2.iterate();
while (try dir_iter.next()) |entry| {
if (entry.kind != .directory) continue;
var path_buf: [std.fs.max_path_bytes]u8 = undefined;
const full_path = std.fmt.bufPrint(&path_buf, "{s}/{s}", .{ dir_path, entry.name }) catch continue;
// Only emit if not already watched.
if (!snapshots.contains(full_path))
try parent.send(.{ "FW", "change", full_path, EventType.dir_created });
}
snapshots_mutex.lock();
defer snapshots_mutex.unlock();
// Get or create the snapshot for this directory.
const gop = try snapshots.getOrPut(allocator, dir_path);
if (!gop.found_existing) gop.value_ptr.* = .empty;
const snapshot = gop.value_ptr;
// Emit created events for files in current but not in snapshot.
var cit = current.iterator();
while (cit.next()) |entry| {
if (snapshot.contains(entry.key_ptr.*)) continue;
var path_buf: [std.fs.max_path_bytes]u8 = undefined;
const full_path = std.fmt.bufPrint(&path_buf, "{s}/{s}", .{ dir_path, entry.key_ptr.* }) catch continue;
try parent.send(.{ "FW", "change", full_path, EventType.created });
const owned = try allocator.dupe(u8, entry.key_ptr.*);
try snapshot.put(allocator, owned, {});
}
// Emit deleted events for files in snapshot but not in current.
var to_delete: std.ArrayListUnmanaged([]const u8) = .empty;
defer to_delete.deinit(allocator);
var sit = snapshot.iterator();
while (sit.next()) |entry| {
if (current.contains(entry.key_ptr.*)) continue;
try to_delete.append(allocator, entry.key_ptr.*);
}
for (to_delete.items) |name| {
var path_buf: [std.fs.max_path_bytes]u8 = undefined;
const full_path = std.fmt.bufPrint(&path_buf, "{s}/{s}", .{ dir_path, name }) catch continue;
try parent.send(.{ "FW", "change", full_path, EventType.deleted });
_ = snapshot.fetchRemove(name);
allocator.free(name);
}
}
fn add_watch(self: *@This(), allocator: std.mem.Allocator, path: []const u8) !void {
if (self.watches.contains(path)) return;
const path_fd = try std.posix.open(path, .{ .ACCMODE = .RDONLY }, 0);
errdefer std.posix.close(path_fd);
const kev = std.posix.Kevent{
.ident = @intCast(path_fd),
.filter = EVFILT_VNODE,
.flags = EV_ADD | EV_ENABLE | EV_CLEAR,
.fflags = NOTE_WRITE | NOTE_DELETE | NOTE_RENAME | NOTE_ATTRIB | NOTE_EXTEND,
.data = 0,
.udata = 0,
};
_ = try std.posix.kevent(self.kq, &.{kev}, &.{}, null);
const owned_path = try allocator.dupe(u8, path);
errdefer allocator.free(owned_path);
try self.watches.put(allocator, owned_path, path_fd);
// Take initial snapshot so first NOTE_WRITE has a baseline to diff against.
try self.take_snapshot(allocator, owned_path);
}
fn take_snapshot(self: *@This(), allocator: std.mem.Allocator, dir_path: []const u8) !void {
var dir = std.fs.openDirAbsolute(dir_path, .{ .iterate = true }) catch return;
defer dir.close();
self.snapshots_mutex.lock();
defer self.snapshots_mutex.unlock();
const gop = try self.snapshots.getOrPut(allocator, dir_path);
if (!gop.found_existing) gop.value_ptr.* = .empty;
var snapshot = gop.value_ptr;
var iter = dir.iterate();
while (try iter.next()) |entry| {
if (entry.kind != .file) continue;
if (snapshot.contains(entry.name)) continue;
const owned = try allocator.dupe(u8, entry.name);
try snapshot.put(allocator, owned, {});
}
}
fn remove_watch(self: *@This(), allocator: std.mem.Allocator, path: []const u8) void {
if (self.watches.fetchRemove(path)) |entry| {
std.posix.close(entry.value);
allocator.free(entry.key);
}
if (self.snapshots.fetchRemove(path)) |entry| {
var names = entry.value;
var it = names.iterator();
while (it.next()) |ne| allocator.free(ne.key_ptr.*);
names.deinit(allocator);
}
}
};
const WindowsBackend = struct {
const windows = std.os.windows;
const win32 = struct {
pub extern "kernel32" fn CloseHandle(hObject: windows.HANDLE) callconv(.winapi) windows.BOOL;
pub extern "kernel32" fn ReadDirectoryChangesW(
hDirectory: windows.HANDLE,
lpBuffer: *anyopaque,
nBufferLength: windows.DWORD,
bWatchSubtree: windows.BOOL,
dwNotifyFilter: windows.DWORD,
lpBytesReturned: ?*windows.DWORD,
lpOverlapped: ?*windows.OVERLAPPED,
lpCompletionRoutine: ?*anyopaque,
) callconv(.winapi) windows.BOOL;
pub extern "kernel32" fn GetQueuedCompletionStatus(
CompletionPort: windows.HANDLE,
lpNumberOfBytesTransferred: *windows.DWORD,
lpCompletionKey: *windows.ULONG_PTR,
lpOverlapped: *?*windows.OVERLAPPED,
dwMilliseconds: windows.DWORD,
) callconv(.winapi) windows.BOOL;
pub extern "kernel32" fn CreateFileW(
lpFileName: [*:0]const windows.WCHAR,
dwDesiredAccess: windows.DWORD,
dwShareMode: windows.DWORD,
lpSecurityAttributes: ?*anyopaque,
dwCreationDisposition: windows.DWORD,
dwFlagsAndAttributes: windows.DWORD,
hTemplateFile: ?windows.HANDLE,
) callconv(.winapi) windows.HANDLE;
pub extern "kernel32" fn PostQueuedCompletionStatus(
CompletionPort: windows.HANDLE,
dwNumberOfBytesTransferred: windows.DWORD,
dwCompletionKey: windows.ULONG_PTR,
lpOverlapped: ?*windows.OVERLAPPED,
) callconv(.winapi) windows.BOOL;
pub extern "kernel32" fn GetFileAttributesW(lpFileName: [*:0]const windows.WCHAR) callconv(.winapi) windows.DWORD;
};
iocp: windows.HANDLE,
thread: ?std.Thread,
watches: std.StringHashMapUnmanaged(Watch),
watches_mutex: std.Thread.Mutex,
// A completion key of zero is used to signal the background thread to exit.
const SHUTDOWN_KEY: windows.ULONG_PTR = 0;
const Watch = struct {
handle: windows.HANDLE,
buf: Buf,
overlapped: windows.OVERLAPPED,
path: []u8, // owned
};
const buf_size = 65536;
const Buf = []align(4) u8;
const FILE_NOTIFY_INFORMATION = extern struct {
NextEntryOffset: windows.DWORD,
Action: windows.DWORD,
FileNameLength: windows.DWORD,
FileName: [1]windows.WCHAR,
};
const FILE_ACTION_ADDED: windows.DWORD = 1;
const FILE_ACTION_REMOVED: windows.DWORD = 2;
const FILE_ACTION_MODIFIED: windows.DWORD = 3;
const FILE_ACTION_RENAMED_OLD_NAME: windows.DWORD = 4;
const FILE_ACTION_RENAMED_NEW_NAME: windows.DWORD = 5;
const notify_filter: windows.DWORD =
0x00000001 | // FILE_NOTIFY_CHANGE_FILE_NAME
0x00000002 | // FILE_NOTIFY_CHANGE_DIR_NAME
0x00000008 | // FILE_NOTIFY_CHANGE_SIZE
0x00000010 | // FILE_NOTIFY_CHANGE_LAST_WRITE
0x00000040; // FILE_NOTIFY_CHANGE_CREATION
fn init() windows.CreateIoCompletionPortError!@This() {
const iocp = try windows.CreateIoCompletionPort(windows.INVALID_HANDLE_VALUE, null, 0, 1);
return .{ .iocp = iocp, .thread = null, .watches = .empty, .watches_mutex = .{} };
}
fn deinit(self: *@This(), allocator: std.mem.Allocator) void {
// Wake the background thread with a shutdown key, then wait for it.
_ = win32.PostQueuedCompletionStatus(self.iocp, 0, SHUTDOWN_KEY, null);
if (self.thread) |t| t.join();
var it = self.watches.iterator();
while (it.next()) |entry| {
_ = win32.CloseHandle(entry.value_ptr.*.handle);
allocator.free(entry.value_ptr.*.path);
allocator.free(entry.value_ptr.*.buf);
}
self.watches.deinit(allocator);
_ = win32.CloseHandle(self.iocp);
}
fn arm(self: *@This(), allocator: std.mem.Allocator, parent: tp.pid) (error{AlreadyArmed} || std.Thread.SpawnError)!void {
_ = allocator;
errdefer parent.deinit();
if (self.thread != null) return error.AlreadyArmed;
self.thread = try std.Thread.spawn(.{}, thread_fn, .{ self.iocp, &self.watches, &self.watches_mutex, parent });
}
fn thread_fn(
iocp: windows.HANDLE,
watches: *std.StringHashMapUnmanaged(Watch),
watches_mutex: *std.Thread.Mutex,
parent: tp.pid,
) void {
defer parent.deinit();
var bytes: windows.DWORD = 0;
var key: windows.ULONG_PTR = 0;
var overlapped_ptr: ?*windows.OVERLAPPED = null;
while (true) {
// Block indefinitely until IOCP has a completion or shutdown signal.
const ok = win32.GetQueuedCompletionStatus(iocp, &bytes, &key, &overlapped_ptr, windows.INFINITE);
if (ok == 0 or key == SHUTDOWN_KEY) return;
const triggered_handle: windows.HANDLE = @ptrFromInt(key);
watches_mutex.lock();
var it = watches.iterator();
while (it.next()) |entry| {
const w = entry.value_ptr;
if (w.handle != triggered_handle) continue;
if (bytes > 0) {
var offset: usize = 0;
while (offset < bytes) {
const info: *FILE_NOTIFY_INFORMATION = @ptrCast(@alignCast(w.buf[offset..].ptr));
const name_wchars = (&info.FileName).ptr[0 .. info.FileNameLength / 2];
var name_buf: [std.fs.max_path_bytes]u8 = undefined;
const name_len = std.unicode.utf16LeToUtf8(&name_buf, name_wchars) catch 0;
const event_type: EventType = switch (info.Action) {
FILE_ACTION_ADDED => .created,
FILE_ACTION_REMOVED => .deleted,
FILE_ACTION_MODIFIED => .modified,
FILE_ACTION_RENAMED_OLD_NAME, FILE_ACTION_RENAMED_NEW_NAME => .renamed,
else => {
if (info.NextEntryOffset == 0) break;
offset += info.NextEntryOffset;
continue;
},
};
var full_buf: [std.fs.max_path_bytes]u8 = undefined;
const full_path = std.fmt.bufPrint(&full_buf, "{s}\\{s}", .{ w.path, name_buf[0..name_len] }) catch {
if (info.NextEntryOffset == 0) break;
offset += info.NextEntryOffset;
continue;
};
// Distinguish files from directories.
const is_dir = blk: {
var full_path_w: [std.fs.max_path_bytes]windows.WCHAR = undefined;
const len = std.unicode.utf8ToUtf16Le(&full_path_w, full_path) catch break :blk false;
full_path_w[len] = 0;
const attrs = win32.GetFileAttributesW(full_path_w[0..len :0]);
const INVALID: windows.DWORD = 0xFFFFFFFF;
const FILE_ATTRIBUTE_DIRECTORY: windows.DWORD = 0x10;
break :blk attrs != INVALID and (attrs & FILE_ATTRIBUTE_DIRECTORY) != 0;
};
const adjusted_event_type: EventType = if (is_dir and event_type == .created)
.dir_created
else if (is_dir) { // Other directory events (modified, deleted, renamed), skip.
if (info.NextEntryOffset == 0) break;
offset += info.NextEntryOffset;
continue;
} else event_type;
watches_mutex.unlock();
parent.send(.{ "FW", "change", full_path, adjusted_event_type }) catch {
watches_mutex.lock();
break;
};
watches_mutex.lock();
if (info.NextEntryOffset == 0) break;
offset += info.NextEntryOffset;
}
}
// Re-arm ReadDirectoryChangesW for the next batch.
w.overlapped = std.mem.zeroes(windows.OVERLAPPED);
_ = win32.ReadDirectoryChangesW(w.handle, w.buf.ptr, buf_size, 1, notify_filter, null, &w.overlapped, null);
break;
}
watches_mutex.unlock();
}
}
fn add_watch(self: *@This(), allocator: std.mem.Allocator, path: []const u8) (windows.CreateIoCompletionPortError || error{
InvalidUtf8,
OutOfMemory,
FileWatcherInvalidHandle,
FileWatcherReadDirectoryChangesFailed,
})!void {
self.watches_mutex.lock();
defer self.watches_mutex.unlock();
if (self.watches.contains(path)) return;
const path_w = try std.unicode.utf8ToUtf16LeAllocZ(allocator, path);
defer allocator.free(path_w);
const handle = win32.CreateFileW(
path_w,
windows.GENERIC_READ,
windows.FILE_SHARE_READ | windows.FILE_SHARE_WRITE | windows.FILE_SHARE_DELETE,
null,
windows.OPEN_EXISTING,
0x02000000 | 0x40000000, // FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED
null,
);
if (handle == windows.INVALID_HANDLE_VALUE) return error.FileWatcherInvalidHandle;
errdefer _ = win32.CloseHandle(handle);
_ = try windows.CreateIoCompletionPort(handle, self.iocp, @intFromPtr(handle), 0);
const buf = try allocator.alignedAlloc(u8, .fromByteUnits(4), buf_size);
errdefer allocator.free(buf);
const owned_path = try allocator.dupe(u8, path);
errdefer allocator.free(owned_path);
var overlapped: windows.OVERLAPPED = std.mem.zeroes(windows.OVERLAPPED);
if (win32.ReadDirectoryChangesW(handle, buf.ptr, buf_size, 1, notify_filter, null, &overlapped, null) == 0)
return error.FileWatcherReadDirectoryChangesFailed;
try self.watches.put(allocator, owned_path, .{
.handle = handle,
.buf = buf,
.overlapped = overlapped,
.path = owned_path,
});
}
fn remove_watch(self: *@This(), allocator: std.mem.Allocator, path: []const u8) void {
self.watches_mutex.lock();
defer self.watches_mutex.unlock();
if (self.watches.fetchRemove(path)) |entry| {
_ = win32.CloseHandle(entry.value.handle);
allocator.free(entry.value.path);
allocator.free(entry.value.buf);
}
}
};
const Process = struct {
allocator: std.mem.Allocator,
parent: tp.pid,
logger: log.Logger,
receiver: Receiver,
backend: Backend,
const Receiver = tp.Receiver(*@This());
fn create() SpawnError!tp.pid {
const allocator = std.heap.c_allocator;
const self = try allocator.create(@This());
errdefer allocator.destroy(self);
self.* = .{
.allocator = allocator,
.parent = tp.self_pid().clone(),
.logger = log.logger(module_name),
.receiver = Receiver.init(@This().receive, self),
.backend = undefined,
};
return tp.spawn_link(self.allocator, self, @This().start, module_name);
}
fn deinit(self: *@This()) void {
self.backend.deinit(self.allocator);
self.parent.deinit();
self.logger.deinit();
self.allocator.destroy(self);
}
fn start(self: *@This()) tp.result {
errdefer self.deinit();
_ = tp.set_trap(true);
self.backend = Backend.init() catch |e| return tp.exit_error(e, @errorReturnTrace());
self.backend.arm(self.allocator, self.parent.clone()) catch |e| return tp.exit_error(e, @errorReturnTrace());
tp.receive(&self.receiver);
}
fn receive(self: *@This(), from: tp.pid_ref, m: tp.message) tp.result {
errdefer self.deinit();
return self.receive_safe(from, m) catch |e| switch (e) {
error.ExitNormal => tp.exit_normal(),
else => {
const err = tp.exit_error(e, @errorReturnTrace());
self.logger.err("receive", err);
return err;
},
};
}
fn receive_safe(self: *@This(), _: tp.pid_ref, m: tp.message) (error{ExitNormal} || cbor.Error)!void {
var path: []const u8 = undefined;
var tag: []const u8 = undefined;
var err_code: i64 = 0;
var err_msg: []const u8 = undefined;
if (@hasDecl(Backend, "handle_read_ready") and try cbor.match(m.buf, .{ "fd", tp.extract(&tag), "read_ready" })) {
self.backend.handle_read_ready(self.allocator, self.parent.ref()) catch |e| self.logger.err("handle_read_ready", e);
} else if (@hasDecl(Backend, "handle_read_ready") and try cbor.match(m.buf, .{ "fd", tp.extract(&tag), "read_error", tp.extract(&err_code), tp.extract(&err_msg) })) {
self.logger.print("fd read error on {s}: ({d}) {s}", .{ tag, err_code, err_msg });
} else if (try cbor.match(m.buf, .{ "watch", tp.extract(&path) })) {
self.backend.add_watch(self.allocator, path) catch |e| self.logger.err("watch", e);
} else if (try cbor.match(m.buf, .{ "unwatch", tp.extract(&path) })) {
self.backend.remove_watch(self.allocator, path);
} else if (try cbor.match(m.buf, .{"shutdown"})) {
return error.ExitNormal;
} else if (try cbor.match(m.buf, .{ "exit", tp.more })) {
return error.ExitNormal;
} else {
self.logger.err("receive", tp.unexpected(m));
}
}
};